Skip to contents

Function to aggregate data according to different scenario

Usage

fct_aggregate_data(
  df5W,
  lookup_dfindicator,
  proportions = "pin",
  totalmodel = "sum"
)

Arguments

df5W

fame with response tracking data

lookup_dfindicator

fame with indicator look up

proportions

can be "pin" or "target" - this uses configuration available within the spreadsheet inst/Proportions.xlsx

totalmodel

can be either: * "sum": sums all beneficiaries of all sectors to get intersector figures per admin1 level and then at national level

* "maxsector" : sums all beneficiaries at sector and admin1 level, then take the max of each age and gender categories for each population type to get the intersector figure

* "southernconemodel" : Mixed approach in 3 steps:

1. Max across Shelter, Food security, Humanitarian transport and WASH

2. Take Protection (General) data

3. Sum Other sectors mentionned: Integration, Multipurporse CBI, Health, Education

Value

list with results

Examples


lookup_dfindicator <- fct_read_lookup(type = "indicator")
df5W <- fct_read_data() 

## Check all 6 combinations...

### Combination 1
resultpinsum <- fct_aggregate_data(df5W,
                             lookup_dfindicator, 
                             proportions = "pin",  
                             totalmodel = "sum"   
)

head(resultpinsum, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …

### Combination 2
resulttargetsum <- fct_aggregate_data(df5W,
                             lookup_dfindicator,
                             proportions = "target",  
                             totalmodel = "sum"   
)

head(resulttargetsum, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …


### Combination 3
resultpinmaxsector <- fct_aggregate_data(df5W,
                             lookup_dfindicator,
                             proportions = "pin",  
                             totalmodel = "maxsector"   
)

head(resultpinmaxsector, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …


### Combination 4
resulttargetmaxsector<- fct_aggregate_data(df5W,
                             lookup_dfindicator,
                             proportions = "target",  
                             totalmodel = "maxsector"   
)

head(resulttargetmaxsector, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …


### Combination 5
resultpinsouthernconemodel <- fct_aggregate_data(df5W,
                             lookup_dfindicator,
                             proportions = "pin",  
                             totalmodel = "southernconemodel"   
)

head(resultpinsouthernconemodel, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …


### Combination 6
resulttargetsouthernconemodel <- fct_aggregate_data(df5W,
                             lookup_dfindicator,
                             proportions = "target", 
                             totalmodel = "southernconemodel"   
)

head(resulttargetsouthernconemodel, 10)
#> # A tibble: 10 × 23
#>    Platform      Country   Admin1       Month   Subsector Monthly Total Benefi…¹
#>    <chr>         <chr>     <chr>        <chr>   <chr>                      <dbl>
#>  1 Southern Cone Argentina Buenos Aires 2023-01 Education                      0
#>  2 Southern Cone Argentina Buenos Aires 2023-01 Food Sec…                      0
#>  3 Southern Cone Argentina Buenos Aires 2023-01 Health                         0
#>  4 Southern Cone Argentina Buenos Aires 2023-01 Humanita…                      0
#>  5 Southern Cone Argentina Buenos Aires 2023-01 Integrat…                     28
#>  6 Southern Cone Argentina Buenos Aires 2023-01 Multipur…                     33
#>  7 Southern Cone Argentina Buenos Aires 2023-01 Nutrition                      0
#>  8 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#>  9 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> 10 Southern Cone Argentina Buenos Aires 2023-01 Protecti…                      0
#> # ℹ abbreviated name: ¹​`Monthly Total Beneficiaries`
#> # ℹ 17 more variables: `Monthly CVA Beneficiaries` <dbl>,
#> #   `Consolidated Total` <dbl>, `Consolidated In Destination` <dbl>,
#> #   `Consolidated In Transit` <dbl>, `Consolidated Host Communities` <dbl>,
#> #   `Consolidated Pendular` <dbl>, `Consolidated Returnees` <dbl>,
#> #   `Consolidated Girls` <dbl>, `Consolidated Boys` <dbl>,
#> #   `Consolidated Women` <dbl>, `Consolidated Men` <dbl>, …