Skip to contents

Aggregates flow descriptions, cleans the text, and generates a word cloud. Optionally facets the word cloud generation by budget year.

Usage

analysis_wordcloud_from_flows(
  flows,
  facet_by_year = FALSE,
  min_freq = 5,
  max_words = 100,
  stopwords = c("project", "response", "support", "activities", "million", "allocation",
    "reserve", "usd", "flow", "end", "start", "standard", "date", "code", "type",
    "humanitarian", "region", "plan", "humanitaire", "r<c3><a9>ponse")
)

Arguments

flows

Dataframe flows.

facet_by_year

Logical scalar: If TRUE, returns a list of word clouds, one for each unique budget year. If FALSE, returns a single word cloud from all descriptions combined.

min_freq

Integer: Minimum frequency of a word to be included in the cloud.

max_words

Integer: Maximum number of words to display in the cloud.

stopwords

Character vector: Additional words to remove (beyond standard English stopwords).

Value

A wordcloud2 object (if facet_by_year=FALSE) or a named list of wordcloud2 objects (if facet_by_year=TRUE).

Examples

analysis_wordcloud_from_flows(flows, facet_by_year = FALSE)
# Returns a named list of word cloud objects yearly_clouds <- analysis_wordcloud_from_flows(flows, facet_by_year = TRUE) #> Warning: no non-missing arguments to max; returning -Inf #> Warning: no non-missing arguments to max; returning -Inf #> Warning: no non-missing arguments to max; returning -Inf #> Warning: no non-missing arguments to max; returning -Inf #> Warning: no non-missing arguments to max; returning -Inf # To view the cloud for a specific year print(yearly_clouds[["2015"]]) print(yearly_clouds[["2024"]]) print(yearly_clouds[["2025"]])