Skip to contents

Work with RIDL datasets (datasets)

Usage

dataset_create(metadata)

dataset_show(id)

dataset_update(id, metadata)

dataset_patch(id, metadata)

dataset_delete(id)

Arguments

metadata

Metadata created by dataset_metadata().

id

The id or name of the dataset.

Value

The dataset.

Details

You must have the necessary permissions to create, edit, or delete datasets.

Note that several fields are required for dataset_create() and dataset_update() operations to succeed. Consult dataset_metadata() for the details.

For dataset_update()/dataset_patch() operations, it is recommended to call dataset_show(), make the desired changes to the result, and then call dataset_update()/dataset_patch() with it.

The difference between the update and patch methods is that the patch will perform an update of the provided parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters not explicitly provided in the metadata.

Examples


#-----
# test search in prod
Sys.unsetenv("USE_UAT")
# riddle::dataset_show(id = "unhcr-cbi-americas-quarterly-report")
# 
# p <- riddle::dataset_show('rms_v4')
# list_of_ressources <- p[["resources"]][[1]]
# list_of_ressources



#-----
# Test create in UAT
Sys.setenv(USE_UAT=1)
m <- riddle::dataset_metadata(title = "Testing Riddle Interface",
                      name = "riddleapitest",
                      notes = "Making an API test",
                      owner_org = "americas",  ## be careful- all lower case!!!
                      visibility = "public",
                      geographies = "UNSPECIFIED",
                      external_access_level = "open_access",
                      data_collector = "Motor Trend",
                      keywords = keywords[c("Environment", "Other")],
                      unit_of_measurement = "car",
                      data_collection_technique = "oth",
                      archived = "False")
# ## For the above to work - you need to make sure you have at least editor access
# to the corresponding container - i.e. owner_org = "exercise-container"
# p <- dataset_create(metadata = m)

# The return value is a representation of the dataset we just created in
# RIDL that you could inspect like any other R object.
# p
## Now deleting this!
# dataset_delete(id = p$id)

#-----
# Test create in prod
Sys.unsetenv("USE_UAT")
# m1 <- riddle::dataset_metadata(title = "Test",
#                       name = "Test",
#                       notes = "The data was extracted from kobo.",
#                       owner_org = "americas-regional-dataset",
#                       visibility = "public",
#                       geographies = "UNSPECIFIED",
#                       external_access_level = "open_access",
#                       data_collector = "UNHCR",
#                       keywords = keywords[c("Environment", "Other")],
#                       unit_of_measurement = "car",
#                       data_collection_technique = "oth",
#                       archived = "False")
# p <- riddle::dataset_create(metadata = m1)